Разжечь Солнце на Земле. Россия первой запустит полноценный термоядерный реактор
Физики Курчатовского института планируют совершить то, что самые развитые мировые державы не могут сделать на протяжении 60 лет. К 2020 году в России может заработать первый термоядерный реактор — источник чистой и дешёвой энергии, призванный заменить обычные атомные электростанции. Такую технологию пытались "оседлать" и раньше, но серьёзных успехов в этом направлении никто так и не достиг.
Фото © FuseNet Association / Khang Le
Как это работает
Фото © ИТАР-ТАСС/ Виктор Воног
С точки зрения физики высоких энергий, использование отдельных элементов в термоядерной "топке" выглядит крайне просто. Термоядерный синтез предполагает, что вместо радиоактивных элементов, таких как уран и плутоний, в качестве топлива в реактор будут загружаться дейтерий и тритий, после чего с помощью электричества конструкция будет разогреваться до температур, которых нет даже на Солнце. После того как температура внутри реактора становится достаточной для начала реакции, происходит постепенный выброс огромного количества тепловой энергии, с помощью которой вырабатывается электричество. Но просто это звучит только в теории, иначе термоядерный синтез был бы поставлен на поток почти сразу после разработки теории и просчёта всей реакции физиками и математиками.
Главная и пока, к сожалению, нерешённая проблема термоядерных реакторов, предназначенных для разогрева дейтерия и трития до температуры в сотню миллионов градусов, — отсутствие эффективности. Если выражаться проще, то удерживать разогретые до состояния плазмы дейтерий и тритий в реакторе учёные научились, но энергия, выделяющаяся во время процесса синтеза, оказывается меньше той, что потребляет реактор. Впрочем, реакцию продолжительной назвать нельзя — со времён первых опытов советских учёных продолжительность реакции увеличили лишь на сотые доли секунды. Успеха не удалось добиться даже самым пытливым в мире физикам — китайским. Их "реактор будущего" под названием EAST разогрелся до 100 млн градусов лишь на тысячные доли секунды — фантастический результат для китайцев, но совершенно отвратительный для коммерческой эксплуатации.
При этом обычного разогрева трития и дейтерия до плазменной "каши" недостаточно. Главная задача термоядерных реакторов (токамаков), которую учёные никак не могут решить на практике, состоит в том, что разогретые частицы нужно удерживать на месте. Только так они будут пригодны для выработки и преобразования тепловой энергии в электричество. При коротких "прожигах" реакторов этого не требуется, но для промышленной эксплуатации необходимы длительные реакции. Добиться этого пока не получается — контроль над системой теряется почти сразу, и термоядерный реактор приходится экстренно останавливать.
Зачем это нужно
Международный экспериментальный термоядерный реактор (ITER). Фото © AP Photo / Claude Paris
Мощность самой производительной в России Ленинградской АЭС составляет 4200 МВт. Расщепления радиоактивных материалов в четырёх энергоблоках достаточно, чтобы осветить огромную территорию. Средняя мощность Международного экспериментального термоядерного реактора (ITER), который строят во Франции, должна составить 500 МВт за один импульс, а пиковая мощность этого комплекса должна составить 1100 МВт — четверть мощности Ленинградской АЭС.
Инженер-атомщик Владимир Спиридонов в беседе с Лайфом отметил, что кроме использования нового типа топлива и потенциально огромного количества энергии могут сильно уменьшиться и размеры электростанций.
Реактор ITER — это лишь первый шаг. Его размеры велики, но по мере развития технологии такая станция станет меньше. Возможно, со временем размеры всего комплекса уменьшат до размеров офисного здания
Реактор ITER — это лишь первый шаг. Его размеры велики, но по мере развития технологии такая станция станет меньше. Возможно, со временем размеры всего комплекса уменьшат до размеров офисного здания
Владимир Спиридонов
Особенность термоядерного синтеза заключается в том, что за сутки таких импульсов может быть десять, а при должном умении — сто и даже более тысячи. После перемножения импульсов на мегаватты выработанной энергии получится, что самая маленькая термоядерная электростанция в разы производительнее атомной. К тому же дейтерий и тритий, используемые в качестве топлива, существенно экологичнее изотопов урана и плутония, да и термоядерный реактор (в теории) почти не надо "перезаряжать".
По сути, термоядерная электроэнергетика — "святой Грааль" человечества. Она способна решить все энергетические проблемы на ближайшие несколько столетий вперёд. Во-первых, после появления термоядерной энергии исчезнет проблема радиационной опасности объектов. Проще говоря, никакого "второго Чернобыля" или "Фукусимы" и близко произойти не сможет. Во-вторых, развитие термоядерного синтеза позволит ликвидировать энергетический голод человечества.
Сейчас все атомные электростанции по всему миру, все ГЭС и ТЭС вырабатывают лишь 2,5 ТВт (тераватт) электроэнергии. Стремительный рост населения спровоцировал и дефицит энергии. Сейчас, по прогнозам специалистов, потребность человечества в электроэнергии оценивается в 10 ТВт — почти в пять раз больше, чем наука и промышленность могут предложить. В-третьих, термоядерный синтез почти сразу станет причиной освоения... Луны.
Дело в том, что, несмотря на достаточное количество дейтерия и трития, идеальным топливом для термоядерных реакторов будущего является гелий-3 — самый лёгкий изотоп гелия. Его практически нет в чистом виде на Земле — для его наработки специальным образом обрабатывают тритий, а процесс этот стоит так дорого, что промышленное производство гелия-3 крайне невыгодно и потому лишено смысла.
Идеальным местом добычи гелия-3 является именно Луна. В лунном грунте гелий-3 лежит в чистом виде, и его даже не нужно обрабатывать: достаточно просто собирать в капсулы специальным комбайном — и можно сразу отправлять на Землю ракетной экспресс-доставкой. Считается, что две тонны гелия-3, разогретые в токамаке или стеллараторе (модернизированный термоядерный реактор), могут дать столько же энергии, сколько 30 млн тонн нефти, сжигаемой в печах ТЭС. Если верить специалистам в области энергетики, лунных запасов гелия-3, необходимого для термоядерного синтеза, будет достаточно для обогрева и освещения Земли в течение следующих шести-семи тысяч лет.
Правда, есть одна проблема. Некоторые физики считают применение гелия-3 в термоядерных реакторах неграмотным и настаивают на том, что все доводы в пользу этого элемента — обычная глупость.
Россия сможет
Фото © ТАСС / Роман Пименов / Интерпресс
Крупных успехов по части управляемого термоядерного синтеза, несмотря на многообещающие заявления, не удалось достичь ни американцам, ни европейцам. К китайскому опыту в этом направлении стоит приглядеться чуть внимательнее, поскольку физики из Поднебесной тестировали свой импульсный термоядерный реактор и повторяли опыты советских физиков. Однако российские учёные тем временем придумали, как из экспериментальной конструкции сделать пригодный к опытно-промышленному применению термоядерный реактор.
На токамаке (реакторе, в котором разогретую плазму удерживают магнитные катушки) Т-15МД российские учёные будут отрабатывать все процессы. Затем их масштабируют на реакторе ITER. Этот термоядерный реактор, строящийся сейчас на территории Франции, без опыта российских исследователей просто не запустится. Это значит, что (без преувеличения) жизни миллионов землян будущего зависят от российских физиков.
Уже известно, что над проектом токамака Т-15МД трудятся лучшие специалисты Курчатовского института и Научно-исследовательского института электрофизической аппаратуры имени Ефремова, и, по сути, российские специалисты — единственные в своём роде: ни в одной другой стране мира попытки совладать с термоядерным синтезом не дошли до строительства реакторов подобного масштаба и типа, как в России. Инженер-атомщик Владимир Спиридонов в беседе с Лайфом отметил, что ни в США, ни в Европе, ни в Китае к разгадке секрета термоядерного синтеза пока не приблизились.
Проблема та же, что и 30, и 40 лет назад. Нормальный источник возбуждения реакции не найден, механизм удержания — тоже. В США этой проблемой занималась компания Lockheed Martin, но и они бросили это дело после нескольких неудач
Проблема та же, что и 30, и 40 лет назад. Нормальный источник возбуждения реакции не найден, механизм удержания — тоже. В США этой проблемой занималась компания Lockheed Martin, но и они бросили это дело после нескольких неудач
Владимир Спиридонов
Почти бесплатный свет
Фото © Pexels
Какое дело обычному человеку до того, кто и где проводит эксперименты по удержанию плазмы? Теоретически, у того, кто первым освоит термоядерный синтез, будет монополия на всё, что связано с электричеством. Энергия, выработанная термоядерными реакторами, даже по самым скромным подсчётам, должна стать дешевле атомной минимум в двадцать, а максимум в сто раз. Если всё произойдёт именно так, как это себе представляют учёные, то дорогая электроэнергия исчезнет как таковая, а вслед за ней буквально всё — от производства продуктов питания до лекарств — должно упасть в цене.
Почти сразу после этого станет широко доступным электротранспорт. Здесь важно пояснить, что современная наука и любые, даже самые продвинутые технологии в энергетике не смогут зарядить все электрические машины, если ими начнёт пользоваться сразу один миллиард человек. Атомная энергия, по прогнозам специалистов, тоже может закончиться — запасы радиоактивных материалов конечны, и к моменту наступления "конца света" хорошо бы иметь надёжную и дешёвую технологию по производству энергии.
Если отечественные учёные смогут решить проблему безопасной и стабильной работы термоядерного реактора первыми, то Россия будет монополистом на рынке электроэнергии до тех пор, пока другие страны не доработают собственные решения в этом направлении. Вопрос лишь в том, кто первым сможет понять, как правильно "разжечь Солнце на Земле".